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The cubic blue phase I displays anomalous electrostriction, i.e., if the electric field vector is rotated from one
crystallographic direction to another, the deformation along the field changes from dilatation to compression or
vice versa. Standard theories of blue phases based on an expansion of the free energy in powers of the
alignment tensorQ(r) are not able to explain this anomaly. Cubic blue phases possess a strong nonlinear
dielectric susceptibilityx4, as shown by experiments of Pieran´ski, Cladis, Garel, and Barbet-Massin@J. Phys.
~Paris! 47, 139 ~1986!#. Hence the corresponding order parameter, which we denote ‘‘bond orientational
tensor,’’ must be included in a theoretical description of the blue phases. Indeed, it has been proposed that the
blue phase III is a structure of pure bond orientational order. Incorporating the bond orientational tensor into
the free energy expansion, we have calculated the distortion of theO8(I4132) andO

2(P4232) blue phase
lattices by a weak electric field within the model of rigid helices. The resulting fourth-order electrostriction
tensor is expressed in terms of the order parameters characterizing theO8 and theO2 ground states of the
undistorted system. The relations generalize studies of Stark and Trebin@Phys. Rev. A44, 2752~1991!#. It is
found that there exists a range for the coupling strength betweenQ(r) andx4 where anomalous electrostriction
is predicted for blue phase I, in accordance with experiment. Thus bond orientational order seems to provide
a link between two unsolved problems: that of the anomalous electrostriction of the blue phase I and that of the
structure of the blue phase III.@S1063-651X~96!02806-1#

PACS number~s!: 61.30.2v, 64.70.Md, 05.70.Ce, 61.50.Ah

I. INTRODUCTION

In the absence of an electric field, as many as three dis-
tinct blue phases can appear between the isotropic liquid
phase and the cholesteric phase. They are labeled, with as-
cending temperature, BPI, BPII, and BPIII, the latter being
also denoted blue fog.

Experiments confirm that the two lower temperature
phases, BPI and BPII, may be described as a body centered
cubic structure with space group symmetryO8(I4132) and a
simple cubic structure with space group symmetry
O2(P4232) @1#, respectively. A theoretical approach cor-
rectly identifying these structures was presented by Grebel,
Hornreich, and Shtrikman@2#. However, the structure of
BPIII is still a matter of intensive studies and controversy
@1–4#.

A weak field only slightly deforms the blue phase lattices.
In the limit of a vanishing field these deformations are ex-
pressed by the electrostriction tensorR, which, in turn, de-
pends only on details of the cubic ground states. Hence a
calculation of the electrostriction tensor can provide an ad-
ditional test of the Grebel-Hornreich-Shtrikman~GHS!
theory, at least in the temperature and chirality range where
the structures of BPI and BPII are reproduced correctly. Cal-
culations along this line have been carried out by Lubin and
Hornreich@5#, Dmitrienko@6#, and Stark and Trebin@7#. The
ratios of the independent componentsR15R1111,
R25R1122, andR352R2323 of R were found in an approxi-
mation that preserves the mass density of the molecules. The
authors obtainedR1 /R2522, in agreement with experi-
ments of Heppkeet al. @8# and Dolganovet al. @9#. On the

other hand, Porsch and Stegemeyer@10# have measured
R1 /R2'22.6, but this value has been questioned@9#.

The ratioR1 /R3 has been reproduced correctly for BPII,
where experiments yielded values between 0.4 and 1.0. For
BPI the experimental values ofR1 /R3 arenegativeand fall
in the range between20.1 and20.4, which means that the
deformations along@001# and@011# directions differ in sign.
Theory, however, gives positive values similar to those ob-
tained for BPII. Thisanomalouscharacter of the BPI elec-
trostriction, i.e., dilatation along one direction and compres-
sion along the other crystallographic direction, remains one
of the unsolved problems of chiral liquid crystal physics.

In this article we present a possible explanation of the
anomalous electrostriction by generalizing the original GHS
theory. The approach is motivated by experiments of Pieran´-
ski et al. @11#, where crystals of the cubic blue phases were
oriented by an electric field. It has been demonstrated that
BPI and BPII possess a strong nonlinear dielectric suscepti-
bility x4 of cubic symmetry. The corresponding order param-
eter is theL54 part ofx4, which we call the ‘‘bond orien-
tational tensor.’’ Based on a Landau-Ginzburg free energy
expansion, which incorporates this tensor in addition to the
standard alignment tensor fieldQab(r), the electrostriction
tensor is calculated for BPI and BPII. The resulting fourth-
order electrostriction tensor is expressed in terms of both the
bond orientational tensor and the alignment tensor field of
the undistorted system. The calculations generalize recent
work of Stark and Trebin@7#. Since a similar theory has been
proposed to explain the structure of the blue fog@4#, our
calculations seem to provide a connection between the two at
first sight uncorrelated problems: that of the anomalous elec-
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trostriction of BPI and that of the structure of BPIII.
The organization of this paper is as follows. In Sec. II an

introduction to the Landau–Ginzburg–de Gennes theory of
chiral nematic liquid crystals is given. Also a discussion of
the relevant order parameters is included. Section III intro-
duces the basic ingredients of the electrostriction theory.
Within the approximation of rigid helices approximate for-
mulas for the components of the electrostriction tensor are
derived. Numerical results are presented in Sec. IV.

II. LANDAU –GINZBURG –DE GENNES THEORY
OF CHOLESTERIC LIQUID CRYSTALS

The orientational properties of the molecules in the blue
phases are described with the help of the Landau–
Ginzburg–de Gennes theory. It is based on the concept of
order parameters: quantities that measure the ordering of the
system under study.

A standard way to introduce order parameters is by refer-
ring to the one-particle distribution function@12# or to mac-
roscopic response functions of the bulk material@13# such as
the dielectric permittivityx. Consider, for instance, the po-
larization P as induced by an applied electric fieldE. In
general,P can be written as a series in permittivity tensors

P5E d3r$x~1!~r!1x2~r!•E1x3~r!•~E^E!

1x4~r!•~E^E^E!1•••%, ~2.1!

where^ stands for the tensor product. Due to thelocal D`

or D2 symmetries of most of the liquid crystalline phases the
permanent polarizationx1 and the third-order nonlinear sus-
ceptibility x3 must vanish. Hence the leading term in the
expansion~2.1! is the second-rank tensorx2(r). Its aniso-
tropic part

Qab~r!5xab
2 ~r!2

1

3
Tr@x2~r!#dab ~2.2!

is referred to as the alignment tensor and is usually taken as
a primary order parameter.

The fourth-rank tensorx4(r) of componentsxabgd
4 (r) is

an example of a leading secondary order parameter. In the
phenomenological description of liquid crystalsx4(r) usu-
ally is disregarded. But for the cubic blue phases such a
procedure seems questionable. Experiments of Pieranski
et al. @11#, aligning BPI and BPII crystals by an electric field,
have shown that the spatially averaged nonlinear dielectric
tensorB, defined as

B5E d3rx4~r!,

is responsible for the orientation process. The tensorB is the
k50 Fourier component of the fieldx4(r). The norm ofB
was found about 105 times larger than for ordinary nematics.
Thus one may conclude thatB must be present in the free
energy expansion for the blue phases, at least when the ex-
ternal electric field is nonzero. It can be divided into
SO(3) irreducible tensorsB„L… of componentsBabgd

(L) with
momentaL50, 2, and 4. Since theL50 part describes the

SO(3) symmetric reference state and theL52 part is absent
in the cubic blue phases, only theL54 hexadecupole part
B(4) of the order parameterB is relevant.

Now we expand the free energy density in terms of the
two order parameters, namely,Qab(r) andBabgd

(4) . The ex-
pansion falls into three parts

F5F LGdG@Q,]Q#1Fcoupl@Q,B
~4!#1F bond@B

~4!#. ~2.3!

The first part represents the well known de Gennes free en-
ergy, which is composed of elastic and bulk terms in
Qab(r), @1,13#

F LGdG@Q~r!#5F elastic@Q~r!,]Q~r!#1F bulk@Q~r!#.
~2.4!

In terms of dimensionless units introduced by Grebelet al.
@2# these read

F elastic@Q~r!,Q~r!#5v21E d3rH 14 k2@e imnQn j ,m2Qi j #
2

1r@Qi j , j #
2J , ~2.5!

F bulk@Q~r!#5F21F31F4 , ~2.6!

where

F25v21tE d3r TrQ2, F352A6v21E d3r TrQ3,

F45v21E d3r Tr~Q2!2. ~2.7!

Here k is the chirality parameter,t the standard reduced
temperature of Landau theory,t 5 1

4(t2k2) the renormal-
ized reduced temperature,r the ratio of elastic constants, and
v the volume.

The global minimization of~2.4! is very difficult and still
unsolved, due to the chiral term in~2.5!, which makes the
gradient and the bulk free energies favor different structures
@1#. Locally preferred configurations cannot be extended glo-
bally due to the presence of topological restrictions, the ef-
fect being known asfrustration. The cubic blue phases ap-
pear as compromise structures@1#.

The second term in~2.3!, denotedFcoupl@Q,B
(4)#, de-

scribes the coupling between the order parameters. To lowest
order inQ andB(4) it involves only one coupling constant
l @4#,

F coupl52
l

3
Ba b g d

~4! E d3r@Qab~r!Qgd~r!1Qag~r!Qbd~r!

1Qad~r!Qgb~r!#. ~2.8!

The third termF bond is an arbitrary stable and SO(3) sym-
metric polynomial in the components ofB(4). Its precise
form, however, is irrelevant in our analysis of the electro-
striction tensor. The simplest expansion forF bond has been
analysed by Jaric´ @14#.

A global minimization of the extended free energy~2.3!
recovers the BPI and the BPII space group structures found
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earlier within de Gennes’s theory~2.4! @4#. Furthermore, the
relative orientation of theB(4) andQ(r) fields ~Goldstone
mode!, which is exclusively determined by a minimization of
the coupling term~2.8!, can be fixed along the@100# direc-
tion. This result is in line with the experiments of Pieran´ski
et al. @11#.

Finally, the model~2.3! predicts a structure with cubic
symmetry withB„4…Þ0 and Q(x)[0, which can be made
stable in that place of the phase diagram where BPIII is
localized. The proposal that the model~2.3! correctly de-
scribes BPIII leads to the question whether it also explains
the anomalous electrostriction of BPI. We shall clarify this
issue here. All the calculations are carried out within the
model of rigid helices where the deformation of the second-
ary order parameterB(4) is disregarded. Due to this approxi-
mation theF bond part of the free energy becomes irrelevant
and we are effectively left with the coupling term~2.8!.

A. Space group induced parametrization ofQab„r…

Since we shall deal with periodic structures it is conve-
nient to expandQ(r) into plane waves of definite helicity.
The expansion reads

Q~r!5(
* k

1

AN*kH (
kP* k

Q~k!eik–rJ , ~2.9!

where

Q~k!5
1

VE Q~r!e2 ik–r. ~2.10!

Here the wave vectorsk are taken from the reciprocal lattice
of a space groupG , where * k5$k85Sk;$Sut%PG % is the
star of k andN*k is the number of prongs of the star* k.
Then the tensorsQ(k) are expressed in terms of theL52
spin tensorsMm

(2)(k)

Q~k!5 (
m522

2

Qm~k!Mm
~2!~k!, ~2.11!

where

M0
~2!~k!5

1

A6
$3k̂^ k̂21%,

M61
~2! ~k!56

1

2
$~ v̂6 iŵ! ^ k̂1 k̂^ ~ v̂6 iŵ!%, ~2.12!

M62
~2! ~k!5

1

2
$~ v̂6 iŵ! ^ ~ v̂6 iŵ!%

are defined with respect to an orthonormal, right-handed lo-
cal coordinate system$v̂,ŵ,k̂% with k̂5k/uku. The reality
conditionQ(r)5@Q(r)#* additionally implies that

Mm
~2!~2k!5~21!m@Mm

~2!~k!#* . ~2.13!

Hence the complete expression forQab(r) reads

Q~r!5(
* k

1

AN*kH (
kP* k

S (
m522

2

Qm~k!Mm~k!D eik–rJ .
~2.14!

A standard way of minimizingF LGdG is to find an active
representation in the expansion~2.14! first. It is achieved by
minimizing the quadratic part of the free energy
F elastic1 F2 with respect tom @see~2.5! and ~2.7!#, which
yields them52 sgn(k) helicity mode. The choice simulta-
neously eliminates the elastic constantr from further consid-
erations@2#.

B. The secondary order parameterB„4…

The second ingredient of the theory is the fourth-rank
tensorB(4). A similar tensor has been introduced by Nelson
and Toner@15# to describe the melting process of atomic
crystals. They assumed that due to large fluctuations of the
atomic positions or unbinding of the dislocation dipoles the
translational order of a crystal is destroyed, but the bonds of
different atomic clusters remain oriented. In the case of
BPIII, modeled in terms ofB(4), the situation is similar,
namely, the periodic sequence of cubic unit cells is inter-
rupted but the substructures of the cells preserve a long-
range cubic alignment.

The partF bond@B
(4)# of the free energy, responsible for

the residual long-range order, is a polynomial in the compo-
nents ofB(4). Calculations show that for theB(4) tensors
minimizing the simplest form ofF bond@B

(4)# there are only
three stable point group symmetries:Oh , D`h, and D4h
@14#, adjacent to the isotropic stateI . The phase diagram is
dominated by the octahedral structureOh , which is accessed
through either a first-order phase transition or a multicritical
continuous transition. The transitionI toD`h is of first order,
whereas the transitionI to D4h is of second order and the
least probable one. Therefore, and because structures of
D`h symmetry have not been detected experimentally in the
blue phases,B(4) is restricted to the space ofOh symmetric
hexadecupole tensors:

B~4!5B0A23537HA 5

14
@M4

~4!~ n̂!1M24
~4! ~ n̂!#1M0

~4!~ n̂!J .
~2.15!

HereB0 is the norm of the tensorB(4) andMm
(4)(n̂) are spin

L54 orthonormal tensors represented in an orthonormal
right-handed triad$n̂1 ,n̂2 ,n̂35n̂%. The Goldstone mode, rep-
resented by the triad$n̂1 ,n̂2 ,n̂%, has been taken parallel to
@n00# directions of theO2 andO8 structures.

III. ELECTROSTRICTION OF CUBIC BLUE PHASES

The deformation of the cubic lattices of blue phases by an
electric field depends crucially on the field strength. In a
weak field, both BPI and BPII crystals are oriented with their
@100# axis parallel to the fieldE, as observed by Pieran´ski
et al. @11#. The authors pointed out that the nonlinear dielec-
tric susceptibilityx(4) is responsible for the orientation of the
BPI and BPII crystals. It is precisely this observable that
matches the bond orientational order parameterB(4).

In stronger fields, the phenomenon of electrostriction, i.e.,
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the continuous deformation of the structure, occurs. In par-
ticular, BPI shows the so-calledanomalous electrostriction.
It means that the sample is dilated or compressed along the
field direction, depending on the orientation of the field with
respect to the crystallographic axes.

Finally, with still larger fields, the blue phases may trans-
form to noncubic blue phases~tetragonal, hexagonal two-
dimensional, or three-dimensional!, to the cholesteric phase,
and also to the nematic phase@16#.

A. The electrostriction tensor

Electrostriction can be viewed as a competition between
elastic and electric forces that results in an equilibrium de-
formation of the structure. The deformation is described by
the symmetric deformation tensor«:

« i j5
1

2
~¹ iv j1¹ jv i !, ~3.1!

where the vector of componentsv i characterizes a shift of
the lattice points under the deformation. In the blue phases
« i j describes a deformation of the mean molecular orienta-
tions but not a translation of the centers of mass.

Using the notation of Stark and Trebin@7#, the free energy
for a distorted blue phase in an external electric fieldE is
given by

F distortion5
1

2
C•~«^ «!2

d8

8p
x~r!•~E^E!. ~3.2!

The first term represents the elastic free energy, whereC is
the matrix of elastic constants. The second term characterizes
the electrostatic free energy, withd8 being a constant that
takes into account the difference between the internal and the
external electric field.

The dielectric tensorx(r) of the distorted structure can
also be expanded with respect to the deformation tensor«.
To lowest order in« andE it reads

x5x011b«1x4~E^E!, ~3.3!

wherex0 is the isotropic term,b the elastooptic tensor, and
x4 the nonlinear dielectric susceptibility defined by Eq.~2.1!.

The equilibrium value of the deformation tensor« is
found by minimizingF distorsion, Eq. ~3.2!, for a given value
of E. It yields

]F distortion

] «
505C«2

d8

8p
bt~E^E!, ~3.4!

where

«5R~E^E!, ~3.5!

with

R5
d8

8p
sbt. ~3.6!

Heres is the matrix inverse to the matrix of elastic constants
andR is the electrostriction tensor.

As the free energy is a scalar, it has to be invariant under
operations of the point groupG. In the case of the cubic blue
phases, the symmetry induces the following restrictions on
the tensorsC andb @17#: ~i! they are symmetric in both the
first and the second pair of indices,~ii ! they are invariant
under the exchange of the indices within a pair, and~iii ! for
cubic symmetry the number of independent components of
C andb is reduced to 3. Using the Voigt notation the tensor
of elastic constants can be written as

C5S C1 C2 C2 0 0 0

C2 C1 C2 0 0 0

C2 C2 C1 0 0 0

0 0 0 C3 0 0

0 0 0 0 C3 0

0 0 0 0 0 C3

D ,

where C15C1111, C25C1122, and C35C1212. Conse-
quently, the electrostriction tensorR also has only three in-
dependent components:R15R1111, R25R1122, and
R352R2323.

B. Calculation of the free energy of distortion

Let us assume thatr is a vector describing the position of
the lattice points before the deformation. Then, to lowest
order, the positionr̃ of the distorted structure is

r̃5~11«!r. ~3.7!

The wave vectorsk̃ of the distorted reciprocal lattice trans-
form inversely

k̃5~11«!21k'~12«!k. ~3.8!

The deformation of thek vectors rotates the tensors
M2

(2)(k). Additionally,Q(k) acquires the homogeneous part
b« @see Eq.~3.3!#. Such a term is forbidden in the undis-
torted structure due to symmetry. Under the assumptions of
the model of rigid helices, the scalar amplitudesQ2(k) do
not change. In summary, the order parameterQ(r) changes
under a deformation in the following way@7#:

Q~r!5(
k
Q2~k!M2

~2!~k!eik–r→
«

Q̃~r!

5b«1(
k
Q2~k!M2

~2!~ k̃!ei k̃–r.

Again the distorted tensorsM2
(2)( k̃) can be expanded with

respect to the deformation tensor«. The corresponding for-
mulae have been derived by Stark and Trebin@7#.

The assumptions discussed above imply that the small
change of the secondary order parameter under deformation
B(4) can be disregarded, i.e.,

B~4!→
«

B̃ ~4!5B~4!.
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The excess free energy resulting from the distortion of the
cubic ground state reads

DF5DFQ1DF coupl, ~3.9!

where

DFQ5F LGdG@Q̃#2F LGdG@Q#, ~3.10!

DF coupl5 F coupl@Q̃#2F coupl@Q#. ~3.11!

The calculation ofDFQ is divided into three steps:~i! the
contribution due to the quadratic part,

F elastic@Q̃,]Q̃#1F2@Q̃#2F elastic@Q,]Q#2F2@Q#

5
1

2
C~2!

•~«^ «!1
t

4
btb•~«^ «!; ~3.12!

~ii ! the contribution due to the cubic part,

F3@Q̃#2F3@Q#52A6~C31bv3!•~«^ «!; ~3.13!

and ~iii ! the contribution due to the quartic part,

F4@Q̃#2F4@Q#5~C41bv414btwb12mbtb!•~«^ «!.
~3.14!

Finally, the contribution due to the coupling term reads

F coupl@Q̃,B
~4!#2F coupl@Q,B

~4!#

52lB0~C coupl1btB~4!b!•~«^ «!. ~3.15!

In later calculationslB0 is treated as a single free parameter
of the theory.

Adding up all the terms~3.12!–~3.15!, the excess free
energy can now be written as

DF5
1

2
CIK« I«K , ~3.16!

where

CIK5CIK
0 2d~M !bMIvMK1S t214m D d~M !bMIbMK

1d~M !d~R!bMIwMRbRK , ~3.17!

CIK
0 5@C222A6C312C422aC coupl# IK , ~3.18!

2v IK5@22A6v312v4# IK , ~3.19!

wIK5@8w22aB~4!# IK , ~3.20!

with

d~M !5H 1 if M51,2,3

2 if M54,5,6.
~3.21!

~Indices written in capital letters imply that Voit notation is
used. The Einstein summation convention over repeated in-
dices is to be understood.! Then, the elastooptic tensorb is

determined by minimization of the free energy with respect
to bST. Finally, the independent components of the electro-
striction tensor are

R15
d8

8p

b1
C12C2

522R2 , ~3.22!

and

R35
d8

8p

b3
C3

. ~3.23!

IV. RESULTS

In the preceding section we derived the electrostriction
tensor by studying a perturbation of the cubic ground states
of BPI and BPII. Hence the numerical values of this tensor
depend on the order parametersQ andB(4) that minimize the
free energy~2.3! of the unperturbed states. Under the ap-
proximation of rigid helices the minimization considerably
simplifies as the purely bond order part does not enter di-
rectly the electrostriction tensor calculations. Consequently,
it is sufficient to minimize the de Gennes part~2.4! of the
total free energy~2.3! and the coupling part~2.8! and treat
the productlB0 as a free parameter.

Being aware of the fact that the free energy~2.4! does not
reproduce the relative stability of BPI and BPII structures,
we used a minimization procedure consisting of two parts.
First of all, only therelativestability of BPI and the isotropic
phase was considered. Second, the same minimization was
carried out by assuming that only BPII and the isotropic
phase are present. Thus we searched for the regions on the
phase diagram where the particular cubic blue phase had
lower free energy than the isotropic phase. More specifically,
for fixed values of the parametersk, lB0 , and of the tem-
perature we found the values of the scalar amplitudes
Q2(k) corresponding to a minimum of the free energy up to
three stars of symmetry allowedk vectors. Taking into ac-
count that the amplitude of the fourth star is negligible, this
makes our calculations consistent with those of Grebelet al.
@2#. The temperature interval was scanned fromt524 up to
the transition temperature between BPI~BPII! and the iso-
tropic phase. For the amplitudesQ2(k) found for BPI and
BPII, the numerical values of the independent components
~3.22! and~3.23! of the electrostrition tensor were tabulated.

We also compared our results with those of Stark and
Trebin @7# by assuming thatlB050. The ratioR1 /R3 calcu-
lated here is larger than in@7# by an amount of 10%~small
chiralities! to 30% ~large chiralities!. In the work of Stark
and Trebin the summations overk vectors of various stars
were simplified with the help of group theory and, up to third
order @Eq. ~3.13!#, were done exactly. However, the fourth-
order contributions@Eq. ~3.14!#, due to extremely large num-
ber of terms, have only been found approximately. We suc-
ceeded in deriving exact formulas for this case by using
MAPLE andFORTRAN programs. It should be mentioned that,
as a test of a proper space group parametrization of the
ground states, the free energy of theO2 and theO8 structures
calculated earlier by Grebelet al. @2# has been recovered.

We have extended the results to the case of nonvanishing
coupling lB0 and have determined the temperature depen-
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dence of the ratioR1 /R3 . The results are given in Figs. 1–4.
In Figs. 1–3, the values of the parametersk and lB0 are
fixed and the ratioR1 /R3 is calculated for each temperature
separately.

Note that forlB050 ~Fig. 1! all the values of the ratios
R1 /R3 are positive and less than unity, indicating that the
experimentally observed behavior of electrostriction of BPI
cannot be explained. We tested the influence of the increas-
ing coupling strengthlB0 on the electrostriction~see Fig. 2!.
Here the ratioR1 /R3 becomes negative for BPI, while it
remains positive for BPII. This is the case of theanomalous
electrostriction. When still increasing the coupling strength,
we arrive at the situation presented in Fig. 3, whereR1 /R3
can be negative for both structures.

All the results are summarized in Fig. 4. It shows the
areas in (lB0 ,k) plane, where the anomalous electrostric-
tion can occur irrespectively of the value of the temperature.
Five regions can be distinguished. In the first area, denoted
O8, only BPI behaves anomalously. Then follows the area
(O81O2), whereR1 /R3 is negative for both structures. For
still higher coupling strength only BPII behaves anomalously

(O2). In the remaining two areas, the ratioR1 /R3 is positive
for BPI and BPII.

However, as it has been recently shown by Englert,
Longa, and Trebin@18#, for higher values of the coupling
parameterlB0 , BPI may vanish from the phase diagram. So
it seems reasonable to consider only the weak couplings.

V. SUMMARY

We have studied an extended Landau–Ginzburg–de
Gennes theory to search for an explanation of the anomalous
electrostriction of BPI. Exact calculations have been carried
out within the approximation ofrigid helices, extending ear-
lier work by Stark and Trebin@7#. These studies allow us to
test the effect of coupling~2.8! between the bond orienta-
tional tensorB(4) and the alignment tensorQ(r) on the elec-
trostriction tensorR.

The results of Sec. IV show that the anomalous electro-

FIG. 1. Temperature dependence of the ratioR1 /R3 for
lB050.0 andk51.8. Here and in the following figures the solid
line represents the behavior ofO2, whereas the dashed line belongs
to O8.

FIG. 2. Temperature dependence of the ratioR1 /R3 for
lB050.3 andk51.6.

FIG. 3. Temperature dependence of the ratioR1 /R3 for
lB050.4 andk51.6.

FIG. 4. Range of the couplinglB0 where the anomalous elec-
trostriction can occur. Five regions can be distinguished. In the first
area, denotedO8, only BPI behaves anomalously. Then follows the
area (O81O2), whereR1 /R3 is negative for both structures. For
still higher coupling strength only BPII behaves anomalously
(O2). In the remaining two areas, the ratioR1 /R3 is positive for
BPI and BPII.
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striction of the BPI is explained with the help of the bond-
order tensor. However, for certain values of the parameter
lB0 , such an anomalous behavior may also be induced in
the BPII phase, which is not observed experimentally.

The results show that the bond orientational order param-
eterB(4) is a relevant parameter, at least in the description of
the cubic blue phases. The values of the coupling constant
lB0 for which the anomalous behavior is induced in BPI but

not in the BPII give hints regarding models proposed for the
structure of the blue fog.
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@14# M. V. Jarić, Nucl. Phys. B246, 647 ~1986!.
@15# D. R. Nelson and J. Toner, Phys. Rev. B24, 363 ~1981!; P. J.

Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. A28,
784 ~1983!.

@16# P. Pieran´ski and P. E. Cladis, Phys. Rev. A35, 355 ~1987!;
R. M. Hornreich and S. Shtrikman,ibid. 41, 1978~1990!.

@17# C. Kittel, Introduction to Solid State Physics, 3rd ed. ~John
Wiley & Sons, Inc., New York, 1966!.

@18# J. Englert, L. Longa, and H.-R. Trebin, Liq. Cryst.~to be pub-
lished!.

53 6073ELECTROSTRICTION OF THE CUBIC BLUE PHASES IN THE . . .


