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The cubic blue phase | displays anomalous electrostriction, i.e., if the electric field vector is rotated from one
crystallographic direction to another, the deformation along the field changes from dilatation to compression or
vice versa. Standard theories of blue phases based on an expansion of the free energy in powers of the
alignment tensoK)(r) are not able to explain this anomaly. Cubic blue phases possess a strong nonlinear
dielectric susceptibilityy*, as shown by experiments of Piéskn Cladis, Garel, and Barbet-Masgih Phys.

(Pari9 47, 139 (1986]. Hence the corresponding order parameter, which we denote “bond orientational
tensor,” must be included in a theoretical description of the blue phases. Indeed, it has been proposed that the
blue phase lll is a structure of pure bond orientational order. Incorporating the bond orientational tensor into
the free energy expansion, we have calculated the distortion oD#4,32) andO?(P4,32) blue phase
lattices by a weak electric field within the model of rigid helices. The resulting fourth-order electrostriction
tensor is expressed in terms of the order parameters characterizi@f thed theO? ground states of the
undistorted system. The relations generalize studies of Stark and TRiyje. Rev. Ad44, 2752(1991)]. Itis

found that there exists a range for the coupling strength bet@éBnand x* where anomalous electrostriction

is predicted for blue phase |, in accordance with experiment. Thus bond orientational order seems to provide
a link between two unsolved problems: that of the anomalous electrostriction of the blue phase | and that of the
structure of the blue phase 1[IS1063-651X96)02806-1

PACS numbgs): 61.30-v, 64.70.Md, 05.70.Ce, 61.50.Ah

I. INTRODUCTION other hand, Porsch and Stegemey&f] have measured
R;/R,~ —2.6, but this value has been questionéd

In the absence of an electric field, as many as three dis- The ratioR;/R3 has been reproduced correctly for BPII,
tinct blue phases can appear between the isotropic liquidvhere experiments yielded values between 0.4 and 1.0. For
phase and the cholesteric phase. They are labeled, with aBPI the experimental values &; /R; are negativeand fall
cending temperature, BPI, BPII, and BPIIl, the latter beingin the range betweer 0.1 and— 0.4, which means that the
also denoted blue fog. deformations alon§001] and[ 011] directions differ in sign.

Experiments confirm that the two lower temperatureTheory, however, gives positive values similar to those ob-
phases, BPI and BPII, may be described as a body centerg¢dined for BPIl. Thisanomalouscharacter of the BPI elec-
cubic structure with space group symme@$(14,32) and a  trostriction, i.e., dilatation along one direction and compres-
simple cubic structure with space group symmetrysion along the other crystallographic direction, remains one
02?(P4,32) [1], respectively. A theoretical approach cor- of the unsolved problems of chiral liquid crystal physics.
rectly identifying these structures was presented by Grebel, In this article we present a possible explanation of the
Hornreich, and Shtrikmar2]. However, the structure of anomalous electrostriction by generalizing the original GHS
BPIIl is still a matter of intensive studies and controversytheory. The approach is motivated by experiments of Pieran
[1-4]. ski et al. [11], where crystals of the cubic blue phases were

A weak field only slightly deforms the blue phase lattices.oriented by an electric field. It has been demonstrated that
In the limit of a vanishing field these deformations are ex-BPI and BPIl possess a strong nonlinear dielectric suscepti-
pressed by the electrostriction tend®r which, in turn, de-  bility x* of cubic symmetry. The corresponding order param-
pends only on details of the cubic ground states. Hence ater is theL =4 part of x*, which we call the “bond orien-
calculation of the electrostriction tensor can provide an adtational tensor.” Based on a Landau-Ginzburg free energy
ditional test of the Grebel-Hornreich-ShtrikmafGHS) expansion, which incorporates this tensor in addition to the
theory, at least in the temperature and chirality range wherstandard alignment tensor field,s(r), the electrostriction
the structures of BPI and BPII are reproduced correctly. Caltensor is calculated for BPI and BPII. The resulting fourth-
culations along this line have been carried out by Lubin andrder electrostriction tensor is expressed in terms of both the
Hornreich[5], Dmitrienko[6], and Stark and Trebif¥]. The  bond orientational tensor and the alignment tensor field of
ratios of the independent component®;=Rii;, the undistorted system. The calculations generalize recent
R,=R112, andR3=2R,3,; 0f R were found in an approxi- work of Stark and Trebifi7]. Since a similar theory has been
mation that preserves the mass density of the molecules. Thoposed to explain the structure of the blue fdg, our
authors obtainedR;/R,=—2, in agreement with experi- calculations seem to provide a connection between the two at
ments of Heppkeet al. [8] and Dolganowet al. [9]. On the first sight uncorrelated problems: that of the anomalous elec-
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trostriction of BPI and that of the structure of BPIII. 80(3) symmetric reference state and the?2 part is absent
The organization of this paper is as follows. In Sec. Il anjn the cubic blue phases, only the=4 hexadecupole part

introduction to the Landau—Ginzburg—de Gennes theory oB(4) of the order parameteB is relevant.

chiral nematic IIqUId CryStalS is given. Also a discussion of Now we expand the free energy density in terms of the

the relevant order parameters is included. Section lll introyyg order parameters, namel@, 4(r) andB%). .. The ex-
.. . .. . _ ' af aBys:
duces the basic ingredients of the electrostriction theorypanSIon falls into three parts

Within the approximation of rigid helices approximate for-
mulas for the components of the electrostriction tensor argF= 7| g4df Q,dQ]+ Foupl Q. B+ Fpond B]. 2.3
derived. Numerical results are presented in Sec. IV.
The first part represents the well known de Gennes free en-
Il. LANDAU —GINZBURG —DE GENNES THEORY ergy, which is composed of elastic and bulk terms in

OF CHOLESTERIC LIQUID CRYSTALS Qup(n), [1,13

The orientational properties of the molecules in the blue  F Lcad QN 1= Felasid Q(r),dQ(r) ]+ Fpud Q(r)].
phases are described with the help of the Landau— 2.9
Ginzburg—de Gennes theory. It is based on the concept %
order parameters: quantities that measure the ordering of tftg]
system under study.

A standard way to introduce order parameters is by refer- 1
ring to the one-particle distribution functidi2] or to mac- }"e,asti([Q(r),ﬂQ(r)]zv’lf d3r{ sz[eiannj,m—Q”]z
roscopic response functions of the bulk matelid] such as
the dielectric permittivityy. Consider, for instance, the po-
larization P as induced by an applied electric fieEl In +P[Qij,j]2}a (2.5
general,P can be written as a series in permittivity tensors

terms of dimensionless units introduced by Grebiehl.
these read

Foud Q(r) = Fo+ Fa+ Fy, (2.6)

= 3 S 4(1) . 3(r) -

P f Er{xP(r)+x2(r)-E+ x3(r)- (E®E) where
+x*(r)-(ERE®E)+ - - -}, 2.1
XA : } 2 ]-'2=v’17-f d®r TrQ?, ]—‘3=—\/§v’1J' d3r TrQd,
where® stands for the tensor product. Due to theal D,

or D, symmetries of most of the liquid crystalline phases the
permanent polarizatiog® and the third-order nonlinear sus- ]-‘4:0*1f d3r Tr(Q?)2. 2.7
ceptibility x*> must vanish. Hence the leading term in the

expansion(2.1) is the second-rank tensa?(r). Its aniso-  ere « is the chirality parametert the standard reduced

tropic part temperature of Landau theory,= i(t—«?) the renormal-
1 ized reduced temperature the ratio of elastic constants, and
N=v2.(N— =TI x2(r) 18 22 v the volume.
Qa1 = Xapl") 3 L] “* 22 The global minimization of2.4) is very difficult and still
unsolved, due to the chiral term i.5), which makes the
: a(fradient and the bulk free energies favor different structures
a primary order parameter. [1]. Locally preferred configurations cannot be extended glo-

4 4 .
The fourth-rank tensox”(r) of componentsc,s,s(r) IS  pally due to the presence of topological restrictions, the ef-
an example of a leading secondary order parameter. In th@. peing known agrustration The cubic blue phases ap-

phenomenological description of liquid crysta{é(r) usu- pear as compromise structurfs.
ally is disregarded. But for the cubic blue phases such a thg gecond term in2.3) denotedF qou,[ Q.B™], de-
procedure seems questionable. Experiments of Pieranskl ines the coupling between the order parameters. To lowest

et al.[11], aligning BPI and BPII crystals by an electric field, order inQ and B it involves only one coupling constant
have shown that the spatially averaged nonlinear dielectri% [4]

tensorB, defined as

is referred to as the alignment tensor and is usually taken

A
B f FEr(n), Fooup="3Bupy s f dr{Qup(NQys(N + QuylN Qpa(r)

+ . .
is responsible for the orientation process. The teBsizrthe Qusl1) Qyel1)] 9
k=0 Fourier component of the fielg*(r). The norm ofB  The third termF,.qis an arbitrary stable and SO(3) sym-
was found about Fotimes larger than for ordinary nematics. metric polynomial in the components &®. Its precise
Thus one may conclude th& must be present in the free form, however, is irrelevant in our analysis of the electro-
energy expansion for the blue phases, at least when the estriction tensor. The simplest expansion f&y,,q has been
ternal electric field is nonzero. It can be divided into analysed by Jarig14].
SO(3) irreducible tensor8®™ of componentngLgyg with A global minimization of the extended free ener@:3
momentaL =0, 2, and 4. Since the=0 part describes the recovers the BPI and the BPII space group structures found
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earlier within de Gennes's theof(®.4) [4]. Furthermore, the 1 2

relative orientation of theB™®) and Q(r) fields (Goldstone Q=2 J > ( > QKM (k) e”‘"].
mode, which is exclusively determined by a minimization of *K \/m ke*k \m=-2

the coupling term2.8), can be fixed along thg100] direc- (2.149
tion. This result is in line with the experiments of Pies&in L . , .
et al. [11]. A standard way of minimizingF g4 iS to find an active

representation in the expansi@14) first. It is achieved by
minimizing the quadratic part of the free energy
i elastic T F With respect tom [see(2.5) and (2.7)], which
yields them=2 sgn(k) helicity mode. The choice simulta-

scribes BPIIl leads to the question whether it also explain§€0Usly eliminates the elastic constarftom further consid-
the anomalous electrostriction of BPI. We shall clarify this €rations2]
issue here. All the calculations are carried out within the
model of rigid helices where the deformation of the second- B. The secondary order parameter(¥
ary order parameteB® is disregarded. Due to this approxi-  The second ingredient of the theory is the fourth-rank
mation theF ,,ng part of the free energy becomes irrelevanttensorB(). A similar tensor has been introduced by Nelson
and we are effectively left with the coupling terf®.8). and Toner[15] to describe the melting process of atomic
crystals. They assumed that due to large fluctuations of the
A. Space group induced parametrization ofQ ,z(r) atomic positions or unbinding of the dislocation dipoles the
translational order of a crystal is destroyed, but the bonds of
different atomic clusters remain oriented. In the case of
BPIIl, modeled in terms o, the situation is similar,
namely, the periodic sequence of cubic unit cells is inter-
1 rupted but the substructures of the cells preserve a long-
Q=2 k[ > Q(k)e‘k‘f}, (2.9  range cubic alignment.
x VNxi ke*k The partF,,d B*] of the free energy, responsible for
the residual long-range order, is a polynomial in the compo-
where nents of B. Calculations show that for thB*) tensors
minimizing the simplest form ofF,,,{ B*)] there are only
three stable point group symmetrie®;,, D.p, and D4y
[14], adjacent to the isotropic state The phase diagram is
dominated by the octahedral struct@g, which is accessed
Here the wave vectots are taken from the reciprocal lattice through either a first-order phase transition or a multicritical
of a space groups, where *k={k’'=Sk{S|t} e &} is the  continuous transition. The transitidrto D, is of first order,
star ofk and N« is the number of prongs of the stdk.  whereas the transitioh to Dy, is of second order and the
Then the tensor€(k) are expressed in terms of the=2 least probable one. Therefore, and because structures of
spin tensordvl?)(k) D..,, symmetry have not been detected experimentally in the
blue phasesB* is restricted to the space f, symmetric

Finally, the model(2.3) predicts a structure with cubic
symmetry withB®=0 and Q(x)=0, which can be made
stable in that place of the phase diagram where BPIII
localized. The proposal that the mod@.3) correctly de-

Since we shall deal with periodic structures it is conve-
nient to expand(r) into plane waves of definite helicity.
The expansion reads

1 .
Q= | ame . (210

2 » hexadecupole tensors:
Q)= 2 Qm(M'(K), (2.19
el 5 ) A A
) B4 =By\2X5X7 \/;1[M5(‘>(n)+M“‘z(n)]+M§;‘>(n)].
where (2.15
1 oot i @) @7 i
Mgz)(k)= —(3kek-1}, HereB, is the norm of the tensd'*’ and Mm (n) are spin
\/E L=4 orthonormal tensors represented in an orthonormal

right-handed triadn, ,n,,N;=n}. The Goldstone mode, rep-
1 resented by the triadin, ,n,,n}, has been taken parallel to
M) (k)= oV W ek+ke(vx iw)}, (212 [n00] directions of theD? and O® structures.

1 Ill. ELECTROSTRICTION OF CUBIC BLUE PHASES
@) (k)= — (U~ v & (T+ v
M:2(k) 2{(\/i W) (v iw)} The deformation of the cubic lattices of blue phases by an
electric field depends crucially on the field strength. In a
are defined with respect to an orthonormal, right-handed loweak field, both BPI and BPII crystals are oriented with their

cal coordinate systenfi¥,w,k} with k=k/|k|. The reality [100] axis parallel to the fielE, as observed by Pierski

conditionQ(r) =[Q(r)]* additionally implies that et al.[11]. The authors pointed out that the nonlinear dielec-
tric susceptibilityx(*) is responsible for the orientation of the
2 2 : . -
M (—k)=(—1)"MZ(k)]*. (2.13  BPI and BPII crystals. It is precisely this observable that

matches the bond orientational order paramBfét.
Hence the complete expression fQ,4(r) reads In stronger fields, the phenomenon of electrostriction, i.e.,
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the continuous deformation of the structure, occurs. In par- As the free energy is a scalar, it has to be invariant under
ticular, BPI shows the so-calleahomalous electrostriction operations of the point group. In the case of the cubic blue

It means that the sample is dilated or compressed along thghases, the symmetry induces the following restrictions on
field direction, depending on the orientation of the field with the tensorsC andb [17]: (i) they are symmetric in both the
respect to the crystallographic axes. first and the second pair of indice§i) they are invariant

Finally, with still larger fields, the blue phases may trans-under the exchange of the indices within a pair, &iid for

form to noncubic blue phasesetragonal, hexagonal two- cubic symmetry the number of independent components of
dimensional, or three-dimensiofalo the cholesteric phase, C andb is reduced to 3. Using the Voigt notation the tensor

and also to the nematic phakks. of elastic constants can be written as

A. The electrostriction tensor c, ¢, ¢, 0 0 O

Electrostriction can be viewed as a competition between c, ¢, C, 0 0 O

elastic and electric forces that results in an equilibrium de- C. C. C.. 0 0 O
formation of the structure. The deformation is described by C= 2 2o ,

the symmetric deformation tenser 0 0 0 G 0 ©

1 0O 0 0O 0 C;3 O

&ij=5(Vivj+Vjvi), 3.) 0 0 0 0 0 Cg

where the vector of components characterizes a shift of where C;=Cj3;5, C;=Cyyp, and C3=Cj,,. Conse-
the lattice points under the deformation. In the blue phaseguently, the electrostriction tens& also has only three in-
gi; describes a deformation of the mean molecular orientadependent components:R;=Ry111, R;=Ri12,, and
tions but not a translation of the centers of mass. R3=2R5323.

Using the notation of Stark and TreHin], the free energy
for a distorted blue phase in an external electric figlds

! B. Calculation of the free energy of distortion
given by

Let us assume thatis a vector describing the position of

1 o' the lattice points before the deformation. Then, to lowest
Fdistortion = 5 C+ (e® &) = 5—x(r)- (E®E). (3.2 order, the positioff of the distorted structure is
The first term represents the elastic free energy, wlkie r=(1+er. @7
the matrix of elastic constants. The second term characterizes -
the electrostatic free energy, with being a constant that The wave vector& of the distorted reciprocal lattice trans-
takes into account the difference between the internal and tHerm inversely
external electric field.

The dielectric tensow(r) of the distorted structure can k=(1+¢&) k~(1-e)k. (3.8
also be expanded with respect to the deformation teasor
To lowest order ine andE it reads The deformation of thek vectors rotates the tensors

M(zz)(k). Additionally, Q(K) acquires the homogeneous part
be [see EQ.(3.3)]. Such a term is forbidden in the undis-
torted structure due to symmetry. Under the assumptions of
the model of rigid helices, the scalar amplitud@s(k) do

not change. In summary, the order param&ér) changes
under a deformation in the following wdy:

X=Xol+be+ x*(E®E), (3.3

where g is the isotropic termb the elastooptic tensor, and

x* the nonlinear dielectric susceptibility defined by E2,1).
The equilibrium value of the deformation tenseris

found by minimizing.F yisiorsion EQ- (3.2), for a given value

of E. It yields .
: QD=2 QM (K)e™ "~ Q(r)
dF distortion . o ¢ k
————=0=Ce¢— z—b'(E®E), (3.9
Je 8w -
=be+ >, Qu(k)MP (k)e'kr,
where K
e=R(E®E), (3.5  Again the distorted tensoms1$?(k) can be expanded with
_ respect to the deformation tenser The corresponding for-
with mulae have been derived by Stark and Trglih
s The assumptions discussed above imply that the small
R= —sH. (3.6 change of the secondary order parameter under deformation
8w B can be disregarded, i.e.,

Heresis the matrix inverse to the matrix of elastic constants e
andR is the electrostriction tensor. B“#— B@W=B®W,
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The excess free energy resulting from the distortion of thedetermined by minimization of the free energy with respect

cubic ground state reads

AF=AFo+AF coupis (3.9

where
AFo=Foad Q1 FLaed Q. (3.10
AF coupt = F coupl Q1 = F coupl Q- (3.1

The calculation ofA 7y, is divided into three stepsi) the
contribution due to the quadratic part,

F etastid Q. 0Q] + Fo[ Q] — F etasil Q. 0Q] — F5[ Q]

1 t
= Ec:<2>-(s® £)+ thb- (e®¢); (3.12
(i) the contribution due to the cubic part,
FAQl-F3[Ql=—V6(Cy+bus) - (e®€);  (3.13

and (i) the contribution due to the quartic part,

FaQ]— Fi[Q]=(Cy+ b, + 4b'wb+2ub'b) - (e €).
(3.14

Finally, the contribution due to the coupling term reads

]:coup[avBM)]_]:coup[Qa 8(4)]

=~ \Bo(Ccouprtb'Bb) - (£@ €). (3.15

to bgt. Finally, the independent components of the electro-
striction tensor are

R,= o b _ 2R 3.2
1787 C,—C, 2 (322
and
_ &' bg -
3_8’7T C3. ( . 3
IV. RESULTS

In the preceding section we derived the electrostriction
tensor by studying a perturbation of the cubic ground states
of BPI and BPII. Hence the numerical values of this tensor
depend on the order paramet&sndB* that minimize the
free energy(2.3) of the unperturbed states. Under the ap-
proximation of rigid helices the minimization considerably
simplifies as the purely bond order part does not enter di-
rectly the electrostriction tensor calculations. Consequently,
it is sufficient to minimize the de Gennes p#&2t4) of the
total free energy2.3) and the coupling part2.8) and treat
the product\ B, as a free parameter.

Being aware of the fact that the free ene(gy) does not
reproduce the relative stability of BPl and BPII structures,
we used a minimization procedure consisting of two parts.
First of all, only therelative stability of BPI and the isotropic
phase was considered. Second, the same minimization was
carried out by assuming that only BPIl and the isotropic
phase are present. Thus we searched for the regions on the

In later calculationa\ By, is treated as a single free parameterphase diagram where the particular cubic blue phase had

of the theory.
Adding up all the termg3.12—(3.15), the excess free
energy can now be written as

AFZ%C|K8|8K, (3.1

where

Ci=Cix — 8(M)by ok + %"’4# o(M)bybwik
+ (M) 8(R)byWyrbRrk (3.17
Cik=[Co~2V6Cs+2C,—2aCcouplic . (318
—vi=[—2\6v3+2v,] i, (3.19
Wi =[8w—2aB™¥],, (3.20
with
S~ 1 .ifM=1,2,3 4
2 ifM=4,5,6.

lower free energy than the isotropic phase. More specifically,
for fixed values of the parameteks \B,, and of the tem-
perature we found the values of the scalar amplitudes
Q-,(k) corresponding to a minimum of the free energy up to
three stars of symmetry allowddvectors. Taking into ac-
count that the amplitude of the fourth star is negligible, this
makes our calculations consistent with those of Grebell.
[2]. The temperature interval was scanned friom—4 up to
the transition temperature between BBPIIl) and the iso-
tropic phase. For the amplitud€3,(k) found for BPI and
BPII, the numerical values of the independent components
(3.22 and(3.23 of the electrostrition tensor were tabulated.
We also compared our results with those of Stark and
Trebin[7] by assuming thaxBy=0. The ratioR; /R calcu-
lated here is larger than {iY] by an amount of 10%small
chiralitieg to 30% (large chiralitie. In the work of Stark
and Trebin the summations ovkrvectors of various stars
were simplified with the help of group theory and, up to third
order[Eg. (3.13], were done exactly. However, the fourth-
order contribution$Eq. (3.14)], due to extremely large num-
ber of terms, have only been found approximately. We suc-
ceeded in deriving exact formulas for this case by using
MAPLE andFORTRAN programs. It should be mentioned that,
as a test of a proper space group parametrization of the
ground states, the free energy of thé and theO?® structures

(Indices written in capital letters imply that Voit notation is calculated earlier by Grebet al.[2] has been recovered.
used. The Einstein summation convention over repeated in- We have extended the results to the case of nonvanishing

dices is to be understogdThen, the elastooptic tensbris

coupling ABy and have determined the temperature depen-
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Ry/R3
o o
=«

FIG. 1. Temperature dependence of the raRg/R; for FIG. 3. Temperature dependence of the raRg/R; for
ABy=0.0 andx=1.8. Here and in the following figures the solid \B,=0.4 andx=1.6.

line represents the behavior ©f, whereas the dashed line belongs

8
to O°. (0?). In the remaining two areas, the raiy /R; is positive

for BPI and BPII.
dence of the rati®®; /R;. The results are given in Figs. 1-4.  However, as it has been recently shown by Englert,
In Figs. 1-3, the values of the parametarsand \B, are  Longa, and Trebir{18], for higher values of the coupling
fixed and the ratidR, /R; is calculated for each temperature parameteA By, BPI may vanish from the phase diagram. So

separately. it seems reasonable to consider only the weak couplings.
Note that fornBy=0 (Fig. 1) all the values of the ratios
R;/R; are positive and less than unity, indicating that the V. SUMMARY

experimentally observed behavior of electrostriction of BPI ] ]

cannot be explained. We tested the influence of the increas- We have studied an extended Landau-Ginzburg—de
ing coupling strength B, on the electrostrictiotsee Fig. 2 Gennes t_hepry to search for an expla_natlon of the anoma!ous
Here the ratioR;/R; becomes negative for BPI, while it electrostriction of BPI. Exact calculations have been carried
remains positive for BPII. This is the case of tieomalous ~Out within the approximation afigid helices extending ear-
electrostriction When still increasing the coupling strength, lier work by Stark and Trebili7]. These studies allow us to
we arrive at the situation presented in Fig. 3, whBféR, test the effect of coupling2.8) between the bond orienta-
can be negative for both structures. tional tensoB® and the alignment tens@(r) on the elec-

All the results are summarized in Fig. 4. It shows thelrostriction tensoR.
areas in §By,«) plane, where the anomalous electrostric- The results of Sec. IV show that the anomalous electro-
tion can occur irrespectively of the value of the temperature.
Five regions can be distinguished. In the first area, denoted
08, only BPI behaves anomalously. Then follows the area
(0®+0?), whereR; /R; is negative for both structures. For
still higher coupling strength only BPII behaves anomalously

FIG. 4. Range of the couplingB, where the anomalous elec-
-1 0 1 5 3 4 trostriction can occur. Five regions can be distinguished. In the first
area, denote®?, only BPI behaves anomalously. Then follows the
area 0%+ 0?), whereR; /R; is negative for both structures. For
still higher coupling strength only BPIl behaves anomalously

FIG. 2. Temperature dependence of the raRg/R; for (0?). In the remaining two areas, the raf®)y /R; is positive for
ABy=0.3 andk=1.6. BPI and BPII.
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striction of the BPI is explained with the help of the bond- not in the BPII give hints regarding models proposed for the
order tensor. However, for certain values of the parametestructure of the blue fog.
ABg, such an anomalous behavior may also be induced in
the BPII phase, which is not observed experimentally. ACKNOWLEDGMENTS
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